Abstract
This paper explores the trends, issues and challenges confronting the successful vaccine development for the novel Coronavirus disease (COVID-19). Right from the commencement of the COVID-19 pandemic, no drugs or vaccine has been developed nor approved for treating those down with COVID-19. This year, the scientific community and the vaccine industry have been asked to respond urgently to SARS-COVID-2 pandemic. Presently numerous vaccine development platforms are under process and DNA- and RNA-based platforms showing great potential followed by recombinant-subunit vaccines. Through explorative research, it was established that companies involved in COVID-19 vaccine development are facing big challenges in the scientific, economic and logistical perspectives. Amongst these challenges are distrust, misinformation, and about understanding the immune system interaction with the vaccine being developed, as well as with the pathogen itself. Adjudged as insurmountable may be too early a conclusion. The race is on and progresses are being made. Proper understanding of trends, metrics and dynamics revolving around COVID-19 vaccine development is crucial in expanding possibilities for positive results from ongoing vaccine research. In this review, we spotlight on the most recent developments in COVID-19 vaccine, including top 10 early candidates that may hit the market in next few months.
Author Contributions
Copyright© 2020
Patel Jainish, et al.
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Competing interests The authors have declared that no competing interests exist.
Funding Interests:
Citation:
Introduction
Since 2002, there has been a record of Coronavirus disease outbreak caused by SARS-CoV, MERS-CoV, as well as the novel SARS-CoV-2, the causal agent of the Coronavirus Disease 2019 that broke out in Wuhan, China in December the same year and has since become widespread across several countries and continents leading to thousands of deaths The family Coronaviridae houses the Beta-Coronavirus genus for which the severe acute respiratory syndrome Coronavirus (SARS-CoV-2) belongs. SARS-CoV-2 is an enveloped single-stranded RNA virus with a 30 kb genome containing envelope (E), spike (s), nucleocapsid proteins (N), and membrane (M) as the four main viral structure proteins alongside 14 open reading frames SARS-CoV-2 predominantly infects lower airways and binds to the alveolar epithelial cells on ACE2. Both SARS-CoV-2 and SARS-CoV are inflammatory cytokines potent inducers Findings have revealed that there is a close association between SARS-CoV and the novel SARS-CoV-2 The whole world is concerned about the vaccine for COVID-19 due to fatality of this condition. On-time vaccination is highly imperative to contain the SARS-CoV-2 pandemic which has been identified to possess a high level of infectivity and high rate of human to human transmission. Traditional public health strategies are currently being employed towards mitigating the virus spread alongside the use of extensive lockdowns in communities and observance of physical distancing. Continuous enforcement of the preventive strategies has been challenging. Moreover, for how long shall the communities remain on lockdown? Experts have stated that the general public will have to live with the pandemic’s social and economic disruption for quite a while. Obviously successful COVID-19 vaccine development is needed as soon as possible. However, vaccine trials are currently on course, yet development of vaccine can take many months to years Recent efforts by researchers is seen in the continuous monitoring of the genetic sequence of SARS-CoV-2 due to possible rapid mutations so as to acquire crucial data required to assist in providing adequate responses for this current outbreak and that to come in the future. This is very important for the vaccine development studies. Viruses originating from animal species and getting transferred to humans are specifically problematic. They have the capacity to undergo rapid mutations due to their animal origin, for which no preexisting immunity is essentially available in the human population. Interestingly, mutations do not practically affect the functioning of the virus regardless of the fact that mutations within the genome of the virus take place during outbreaks. Such mutations are also unlikely to present any significant resistance to a future vaccine Vaccine development is a long, tedious and costly process with multiple clinical trials to ensure safety. WHO reports that as at July 2020, they are tracking over 140 vaccine candidates out of which 24 are in the clinical development phase Six stages of the development of vaccine have been outlined by the CDC: Exploratory stage, preclinical stage, clinical development, regulatory review and approval, manufacturing, and quality control. The entire vaccine development process often takes several years, sometimes up to decades The vaccination decision making calculus spans equilibrium of risk and benefit alongside uncertainty. The SARS and Zika epidemics were ended before the development of the vaccine funding agencies reallocated funds that had been committed for it, leaving manufacturers with great financial losses and slowing down other vaccine-development programs. Since the overall impact of vaccines demands extensive public acceptance in achieving population-level immunity, right from the onset, policies on vaccination have been subjected to ideological and political debate, featuring individual rights against public health. Several of the vaccine candidates have passed through intensive clinical testing protocols in a bid to prove their efficaciousness and safety Something more is the distrust, wildfires, rumors encompassing the vaccines and even the virus itself. These elements are described by WHO as “infodemic”; in reference to fake news spreading spontaneously and readily than the novel Coronavirus In giving response to a pandemic arising from a novel viral pathogen with very high infectivity (like wildfire), discovery of commercial biopharmaceuticals may not be solely palatable as response. Vaccine and drug manufacturers are naturally used to charting the course of clinical and regulatory development protocol spanning several years (sometimes up to decades). In the same vein, there is little experience on the side of drug development regulators in pandemic context. There is yet to be an accelerated pathway for COVID-19vaccine development or even for any other emerging infectious disease. The efforts in progress towards developing a vaccine should be monitored using three prompts: speed, production and deployment in terms of scalability and accessibility globally. Funding is highly needed to achieve a successful vaccine development. The estimate given by the CEPI indicates that at least US$2 billion investment will be needed to develop three vaccines over the nest 12-18 months excluding manufacture or delivery costs. As obtained in times past, vaccines still serve as a kind of diplomacy aimed at maintaining the basic level of global cooperation. Trust remains the fundamental standpoint that underpins vaccine acceptance. Trust in the steps, processes, practices, licensure, policies, manufacturing and even the deployment of developed vaccines. Having trust in the policy makers, the healthcare professionals – nurses, doctors, community health practitioners and others. If the issue of trust remains unaddressed and understood, efforts at improving the confidence of vaccines to be developed may fail, particularly when the new vaccine technologies currently used as well as the speed through which the vaccines are being developed are involved.
Vaccine Candidate
Clinical Trial
Description
Inactivated Vaccine
Phase 3
Inactivated COVID-19 vaccine initiated through ChiCTR2000031809; a double-blind randomized, Placebo-parallel regulated phase 1/2 clinical trial using Healthy individuals of 5 years old and above.
mRNA 1273
Phase 3
Being developed by Moderna on the premise of past studies on the other Coronaviruses (MERS and SARS). Successful phase 1 completed using 105 healthy individuals with results showing successful antibodies neutralization. Both in mouse model and in healthy individuals subjected with the phase 1 and 2 trials. Phase 3 features 30,000 Participants with high risk of SARS-CoV-2 infection.
CoronaVac
Phase 3
Previously called PiCoVacc, an alum-adjuvanted and formalin-inactivated vaccine candidate with results from animal studies showing partial or complete protection in macaques. A record of positive immune response with more than 90% neutralizing antibody seroconversion rate after phase 1/2 trials.
Bacillus Calmette-Guerin (BCG) live-attenuated vaccine
Phase 2/3 clinical trials
Being a vaccine previously developed for tuberculosis. Currently studied in the randomized and controlled phase 3 trials.
AZD1222
Phase 2/3 clinical trials
A Chimpanzee adenovirus vaccine vector scaled through phases 1/2 trials featuring a single-blinded multi-centre study. Vaccine proves to have acceptable safety profile with the majority of Patients showing antibody response.
BNT162
Phase 2/3 clinical trials
A modRNA candidate with report of robust immunogenicity after Clinical trials phase 2. Received FDA fast track designation for two of its kind – BNT162b1 and BNT162b2.
Ad5-nCoV
Phase 2
Recombinant COVID-19 vaccine incorporating the adenovirus type 5 vector. Phase 1 trial result indicates a humoral and immunogenic Response with series of adverse reactions recorded. Phase 2 shows Specific interferon γ enzyme-linked immunospot assay and Neutralizing antibody responses.
Adjuvant recombinant vaccine candidate
Phase 2
Results from phase 1 trial yet to be released, phase 2 trials Underway.
ZyCoV-D
Phase 2
A plasmid DNA vaccine candidate targeting the virus’ membrane Protein during viral entry.
Covaxin
Phase 2
Inactivated vaccine candidate with encouraging prospects, already Progressed into phase 2 clinical trial.