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Abstract 

 On the basis of Hardy – Weinberg’s law the problem of inbreeding in a family tree and a population was 

investigated. With use of an inbreeding factor are received the discrete equation for a family tree and differential 

equation for a population. The numerical solution of the differential equation for a population was found and                

analyzed at various values of the inbreeding factor. Migration of inbred population is investigated in view of natural 

selection. It was shown that velocity of migration falls with increase of the inbreeding factor. Interrelation of the 

recessive allele frequency at woman for a migrating population with inbreeding factor and standard parameter of 

selection was found. 
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Introduction 

 Problem of inbreeding is one of the major 

problems of genetics. Since times of the human 

occurrence the population size was very small. People 

lived separate tribes. Therefore, consanguineous mating 

or inbreeding has been submitted enough. In process of 

the population size increase the intensity of such mating 

was reduced. But till now the consanguineous mating 

are present at small communities. 

 Inbreeding are widely submitted at animals. 

Very much frequently the man uses consanguineous 

mating of animals at artificial selection to receive useful 

properties of animals: speed of run, force, fleshiness, a 

plenty of milk, a wool, etc. 

 Let's consider principles of inbreeding in a family 

trees and a population. 

Inbreeding in a Family Tree 

 There are family trees and populations where 

the principle panmictic mating is essentially broken. 

Usually it is geographically or socially relatively isolated 

small communities. In these communities the inbreeding 

i.e. consanguineous mating of various orders (a       

parent - a child, sibs, cousins, uncle - niece, etc.), can 

be wide-spread.  

 The problem of inbreeding influence on the 

population is the important problem of genetics [1]. Now 

this problem yet has not received the final solution. 

 In most cases the inbreeding in a family tree 

take into account on three generations. It is the most 

distant relatives who are taken into account at 

consanguineous mating there is second cousins.  

 The inbreeding is taken into account with the 

help of inbreeding factor. 

 The inbreeding factor is the probability two 

alleles are identical by origin. 

 Let's consider the method of factor inbreeding 

factor calculation in a family tree offered by                     

Wright [1, 2]. 

For the inbreeding factor finding it is necessary:  

• to find for the marrying descendants all ways in a 

family tree which through the common ancestor 

connect these descendants. 

• to count up number of steps (alternations of 

generations) on each way. 

Then the inbreeding factor is equal: 

                                   

     ……(1) 

 where r there is number of ways,                       

m1, m2, ... mi - number of steps on each way. 

 Once again we shall note that the number of 

addends in the sum (1) is equal to number of ways 

which through the common ancestors connect marrying. 

 Let's consider concrete cases of family trees,  

fig. 1. In this figure the square means a male individual 

the circle – female individual. Dotted lines and identical 

digits specify possible ways in a family tree which 

through the common ancestor (the man or the woman) 

connect of the descendants consanguineous marrying. 

On some sites of ways, fig. 1с, there are two digits 1 

and 2. It specifies that such sites are the common for 

the various ways. 

 The marriage a father - daughter is incest, fig. 

1а. The descendant (woman) is connected with the 

ancestor (man) there 1 way with one step, i.e. m = 1.  

Hence, there is inbreeding factor. 

Ft = 1/2.2-1 = 1/4 

 There is marriage a brother - sister (sibs), fig. 

1b. Digits specify the number of the way. The numbers 

of identical digits on the way from the marrying man to 

the woman is equal the number of steps. 

 Let each descendant who has married connects 

with partner two ways with two steps on the each way, 

i.e. m = 2. Hence, there is inbreeding factor. 

Ft = 1/2.(2-2 + 2-2) = 1/4 

 The marriage between cousins is shown on                

fig. 1с. 

Each descendant who has married connects with partner 

the 2 ways with 4 steps on the each way, i.e. m = 4. 

Hence, there is inbreeding factor. 

Ft = 1/2.(2-4 + 2-4) = 1/16 

 The formula (1) is easy for understanding from 

the following logic. 

 Obviously there 1/2 genes of the child is the 

common with each parent, 1/4 - with the grandfather 
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and grandmother, 1/8  - with the great-grandfather and 

great-grandmother, etc. If from the woman to any 

ancestor leads the way with η steps the share of the 

common genes with this ancestor is equal 2-η. If from 

the man to any ancestor leads the way with μ steps the 

share of the common genes is equal 2-μ. At the marriage 

of the man and woman with the common ancestor the 

share of the common genes with this ancestor will be               

2-η. 2-μ = 2-m  where m = η + μ there is total number of 

steps through the common ancestor from the woman up 

to the man marrying. The size 1/2 2-m shows probability 

that the gene casually chosen at the woman will be 

identical by origin to the gene casually chosen at the 

man. The same size gives the contribution to the 

inbreeding factor Ft one way through the common 

ancestor from the woman up to the man marrying. 

 For example, if the common ancestor will be 

away from marrying on η = μ = 5  generations the 

probability them to have the common gene is equal.            

1/2 2-(5+5) = 1/2048 This size at the analysis of mating 

can be neglected. (Table 1) 

 The inbreeding factor Ft  is the probability of two 

alleles in posterity are identical by origin i.e. occur from 

same gene of ancestor [1]. Or, that too most, the 

inbreeding factor is a probability of the allele origin in 

posterity is consanguineous. Hence, the probability of 

the non-consanguineous origins of identical alleles in 

homologous chromosomes is equal 1 - Ft.  

 Let's find total probability of the recessive 

homozygote aa occurrence (event аа) at random mating 

for an autosomal genes [3]: 

 

   .......(2) 

 This formula follows from the following logic of 

mating: the origin of identical alleles in homologous 

autosomes is non-consanguineous (the probability of 

this hypothesis is P(H1) = 1– Ft )also arises homozygote 

аа (conditional probability of this event is                       

P(aa/H1) = q2) or origin of identical alleles is 

consanguineous (the probability of this hypothesis is                 

P(H2) = Ft ) and arises homozygote аа (conditional 

probability of this event is P(aa/H2) = q). The probability 

q of the homozygote aa occurrence in the latter case is 

determined by that if allele a is in one autosome then at 

consanguineous origin of homozygote same allele 

necessarily should be and in the homologous autosome.  

 Hence, the total probability of the recessive 

homozygote occurrence is equal: 

      

                                                       ……….(3) 

Figure 1. Some kinds of inbreeding in a family tree 
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 where it is taken into account p = 1 - q there is 

the dominant allele a frequency. 

 Similarly there find total probability of the 

dominant homozygote AA occurrence at random mating: 

   

……….. (4) 

 Thus, according to (3) and (4) total frequency of 

homozygotes (dominant and recessive) in inbred family 

tree increases on 2Ft pq. Hence, frequency of 

heterozygotes decreases for the same size and to 

become equal 2pq - 2pqFt = 2pq(1-Ft) since the sum of 

the all zygote frequencies is equal 1. 

 In view of inbreeding factor and also (3) and (4) 

the Hardy - Weinberg law in the following generation of 

inbred family tree for an autosomal genome needs to be 

written down the distributions of zygote genotypes                  

as [4]: 

                                                       …………(5) 

 Where pn  is the dominant alleles A frequency in 

generation n, qn  - the recessive alleles a frequency,                

so pn + qn = 1. 

 The ratio (5) refers to also Wright’s                     

ratio [5]. Wright’s ratio shows that in an inbred family 

tree after the consanguineous mating of individuals are 

observed the following effects: there is increase in the 

autosomal homozygotes fraction in a family tree on                   

Ft pnqn and reduction of the autosomal heterozygotes 

fraction in (1-F1) ones in comparison with a panmictic 

population. 

 But already through one generation the                

Hardy – Weinberg balance is restored that specifies the 

small importance of the separate consanguineous 

mating for a family tree: 

 

 .........(6) 

 Obviously, for a population as whole the 

separate act of the consanguineous mating will have still 

smaller importance than for a family tree. 

 The same effect of variation of zygote 

genotypes frequency is observed and for sex-linked 

genes. 

 Distribution of the genotypes linked to the                  

Х-chromosome in panmictic family tree is described by 

Hardy – Weinberg law as [1]: 

 

                                                     ………..(7) 

 The frequency of a dominant alleles A we shall 

designate at the men pm and at the women pf. For 

recessive alleles a it is accordingly qm and qf . 

 At mating there is a ratio of genotypes at the 

women according to product (pf + qf) (pm +qm).  

 Let's find the total probability of the recessive 

homozygote aa occurrence at random mating for the 

daughter’s genes linked to the Х-chromosome under the 

formula (2). The logic of events is similar to the case for 

autosomes except that the conditional probability of a 

genotype аа occurrence from the non-consanguineous 

alleles according to (7) is equal P(aa/H1) = qmn qfn. For 

the consanguineous alleles the conditional probability of 

a genotype аа occurrence is equal P(aa/H2) = qf(n+1). At 

daughters, i.e. in generation n+1 the probability of a 

homozygote aa occurrence is determined by that if allele 

a is in one Х-chromosome then at consanguineous origin 

of homozygote same allele necessarily should be and in 

the homologous Х-chromosome.  

 Hence, the total probability of the recessive 

homozygote occurrence is equal: 

                                                           ……(8) 

 where pmn is the dominant alleles A frequency in 

generation n at men and pfn - at women. For the 

recessive alleles a accordingly qmn  and qfn . Besides it is 

used qmn  =1 - qmn and pfn = 1 - qfn. 

 Similarly finding the total probability of the 

dominant homozygote occurrence with use: 

 

 

 

    

( ) ( ) pqFррFрFAAP ttt +=+−= 221

( ) ( ) ( ) ( )nntntnnnntn qpFqaaFqpAaqpFpAA +−+ 22 :)]1(2[:)(

( ) ( ) nnntntnnn qqpFqFqpq =++−=+
2

1 12
2

1

( ) ( ) ( ) fmmffmmf qqaaqpqpAappAA :)(: +

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )mnfnfnmn
t

fnmnfnmnmnfn
t

fnmn

mnfntfnmntnftfnmnt

qpqp
F

qqqqqq
F

qq

qqFqqFqFqqF

H
ааPHP

H
ааPHPaaP

++=−++=

=++−=+−=

=






+






=

+

2
2

2

2

1
11 1

2
2

1
1

( ) ( )mnfnnf ppp +=+
2

1
1

http://www.openaccesspub.org/
http://openaccesspub.org/
http://openaccesspub.org/journal/jge
https://openaccesspub.org/journal/jge/copyright-license
https://doi.org/10.14302/issn.2694-1198.jge-20-3206


 

Freely Available  Online 

www.openaccesspub.org         JGE          CC-license         DOI: 10.14302/issn.2694-1198.jge-20-3206        Vol-1 Issue 1 Pg. no.–  25  

 

 

 

           

   ………..(9) 

 

and a heterozygote P(Aa) = 1– P(aa) - P(AA)  we shall find distribution of the genotypes in Х-chromosomes of the 

inbred family tree at mating: 

 

 

    

  ……..(10)                 

 

 It is simultaneously demonstrated that as well as in autosomes the inbred additives in dominant and 

recessive homozygote frequencies in the sex-linked chromosomes are identical.  

Other way of the ratio (10) finding will consist in the following. 

 Let's find first the total probability of a heterozygote Aa occurrence, i.e. P(Aa)  at the opportunity of the 

random consanguineous mating. This probability follows from the following logic of mating: the origin of alleles is 

non-consanguineous (the probability of this hypothesis is P(H1) = 1 - Ft ) also arises heterozygote Aа (conditional 

probability of this event is P(Aa/H1) = pmnqfn + pfnqmn, see the formula (7)) or origin of alleles is consanguineous (the 

probability of this hypothesis is P(H2) = Ft) and arises heterozygote Aа (conditional probability of this event is equal 

to zero P(Aa/H2) = 0 ). Last statement is defined by that at consanguineous origin similar alleles in homologous Х-

chromosomes cannot the heterozygote Аа arise consisting different alleles. 

Hence, using the formula of total probability we find total probability of the heterozygote Aa occurrence: 

 

 

         ……..(11) 

  

 Reduction of a heterozygotes Aa frequency occurs as has been proved earlier due to identical increase in 

dominant AA and recessive aa homozygotes frequency. For example, the increase in recessive aa homozygotes 

frequency is equal: 

 

 

     ……..(12) 

  

 where reduction of the heterozygotes Aa frequency relative of panmictic family tree according to (7) and 

(11) is equal. ΔP(Aa) = - Ft (pmnqfn + pfnqmn) Using (11) and (12) to update (7) for cases of inbreeding we find the 

distribution of genotypes (10) in Х-chromosomes in the daughters inbred family tree. 

In following generation the frequency of the recessive alleles a at women is equal: 
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     ……..(13) 

 

 That fully complies with same frequency at absence of inbreeding, i.e. there is restoration of the                 

Hardy – Weinberg  balance or is more exact approach to the balance.  

 The ratio (7) and (13) show as a whole the allele frequencies in a family tree for the account of inbreeding 

do not vary. There is only an alleles redistribution. A part of alleles leave the heterozygotes and pass to the 

homozygotes. 

Genetic Load in a Family Tree 

 In the inbred populations so-called the genetic load frequently connected to harmful mutations only 

recessive alleles passed to offspring is accumulates.  

 It is connected to increase in the recessive homozygotes aa frequency in the inbred populations or family 

tree, see (3) or (8), in comparison with panmictic. The increase of inbreeding can increase frequency of recessive 

homozygotes for mutant alleles. 

 The concept of the genetic load in the population was used for the first time the known geneticist Nobel 

laureate H. J. Muller [6]. However, actually the theory of the genetic load has been developed only for a family tree. 

 The consanguineous mating in a population increase homozygotes frequency of harmful mutant alleles. 

Therefore, it is supposed that inbreeding is one of principal causes of occurrence and accumulation of the genetic 

load. 

 The genetic load can be expressed in lethal equivalents. The lethal equivalent is, for example, one lethal 

mutation resulting in death of an individual in all cases or two lethal mutations each of which resulting in death of 

the individuals in 50% cases, etc. 

 At research of the genetic load in a family tree the action of selection we shall not take into account to not 

complicate the analysis. It is allowable since selection submits to other laws rather than occurrence of mutations. 

According to the genetic load theory the formula (10) needs to be transformed [1]: 

 

 

 

 

,             ……...(14) 

  

 where s there is probability of the recessive homozygote destruction as consequence of the inbreeding,               

sh  - probability of the heterozygote destruction as consequence of the inbreeding, h - so-called dominant degree of 

the mutation which have occurred owing to inbreeding. If h = 1 there are heterozygotes and recessive homozygotes 

perish with the identical frequency, if h = 0  the heterozygotes are resistant to inbreeding. Dominant homozygotes 

are assumed absolutely resistant to mutations. It is mutational model of process. 

 Let's notice that the ratio (14) concerns to a family tree as separate usually small making population. 

Using (14) we shall find the recessive allele a frequency at women in the following generation: 
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 ……….(15) 

                     

  In the following generation there is no restoration of the Hardy - Weinberg balance, i.e. 

accumulation of the genetic load in a family tree, and hence and in a population is observed. 

 Let's enter the designation F = sh - Ftsh + Fts - factor of inbreeding for the population. We shall note that if 

the heterozygotes are resistant to mutations owing to inbreeding h = 0 , and recessive homozygotes are perish with 

probability s = 1  the inbreeding factors of the populations and family tree are equal F = Ft. Thus the formula (15) 

can be written down as: 

 

    ……(16) 

 Lack of the formula (16) is absence normalization on the general fraction of genes less than 1 the rest after 

lethal mutations. However the standard way of normalization results in too complex formulas which do not allow 

proceed to the analysis of the population. 

 For updating the formula (16) it is used the following logic. In the condition of balance of the family tree 

with inbreeding the formula (13) for calculation of the recessive allele a fraction is correct. The formula (13) is 

absolutely correct since is normalized on the general portion of genes equal 1. 

 Taking into account (13), and also F<<1 and small size of the second addend in the right part (16) it is 

possible to assume that for normalization (16) it is necessary to divide the right part into value 1 - F . 

Therefore, the corrected formula (16) looks like: 

 

     ……(17) 

Accuracy of the formula (17) can be estimated as follows. Using the formula similar (13) for frequency of dominant 

allele A in generations of women and summing it up with the formula (13) for frequency of recessive allele a we find 

pf(n+1) + qf(n+1) = 1/2(pfn + qfn + pmn + qmn)=1 that it is possible to assume a condition of normalization. If instead of 

the formula (13) to lead similar transformations with the formula (16) the condition of normalization is not carried 

out even in the main (first) order on allele frequencies. For the formula (17) condition of normalization in the main 
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order is carried out. The mistake of normalization is O = (pmnpfn + qmnqfn) F/(1 - F)  i.e. concerns to higher (second) 

order of smallness on allele frequencies. 

 The formula (17) allows find the recessive allele a fraction at women in the following generation of the 

family tree as the sum of equilibrium addend and gradually increasing owing to inbreeding the genetic load. 

Inbreeding in a Population 

 Let’s carry out the analysis of the inbreeding action on a population. 

 At research of inbreeding in populations the action of selection we shall not take into account (it will be 

taken into account later) to not complicate the analysis. It is allowable since selection submits to other laws rather 

than occurrence of mutations owing to inbreeding. 

 Using a standard technique of transition from a family tree to a population [7] in the basis of the analysis we 

shall put the formula (17) which allows to calculate fraction of the recessive allele a in the Х-chromosome of women 

in the following generation as the sum of the equilibrium term and gradually increasing genetic load owing to 

inbreeding. 

Taking into account that the man inherits the Х-chromosome from mother i.e. qmn = qf(n-1)  it is possible to transform 

(17) to kind: 

 

     ……(18) 

where F there is inbreeding factor for a population. 

 The differential equation for change of frequency qfn of recessive allele a in the inbred population we shall 

write down in general form: 

 

,     …….(19) 

 where the independent variable n there is in this case time of the population life normalized on average on 

family trees of the population time of one alternation generation (approximately 25 years) i.e. actually continuous 

dimensionless time, η   and μ  - constants. 

Let's pass in (19) to finite-differential form: 

 

 

        ……..(20) 

Let's collect the like terms: 

  

……..(21) 

 

Let's multiply (21) on  -2  besides we shall replace 

 that is allowable for continuous in time of the generation alternation scale i.e. for a population:  
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  ……(23)  

 

     ……...(24) 

 

        ……….(25) 

 

The solution of the given system looks like: 

 

,       ……...(26) 

that similarly the equilibrium panmictic population, [7]. 

 

      …….(27) 

Hence, the differential equation (19) can be copied as: 

 

     …….(28) 

 The number of generation for the population does not play a role - the continuous time scale therefore, an 

index n is omitted. 

 The found nonlinear differential equation (28) is the Hardy-Weinberg law for a population with the account 

of inbreeding. 

At F = 0 (inbreeding is absent) the equation (28) it will be transformed to the kind that corresponds to the 

equilibrium panmictic population: 

We use in (28) new independent variable . t = n/Δn√ F/(1-F) If to accept [7]  Δn = 3/2ln 2  

we shall find  

 

 

For the new variable t the equation (28) depends only on one constant parameter Ԑ: 

 

      …….(29) 

where it is designated Ԑ = 3/2 √ (1-F) / F . At variation of the inbreeding factor 0 ≤ F ≤ 1 the size is ∞ ≥ Ԑ ≥ 0. 

The nonlinear differential equation (29) can be solved only numerically.  

Initial conditions first of all are necessary for the solution of the differential equation (29): initial frequency qf0  of the 

recessive allele a and initial speed of increase in this frequency (dqf / dt)0 or (dqf /dn)0.  

 Initial frequency qf0  depends on time of the beginning of the population analysis. Therefore, without 

reduction of the analysis generality at t = 0  or n = 0 we shall accept qf0 = 0.6 

 Various variants of numerical calculations under the formula (29) show that the result of calculation at small 

initial speed of the frequency increase qf  practically does not depend on this speed. Therefore, was accepted. (dqf / 
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dt)0 = (dqf /dn)0 = 0 The step of the variable t equal Δt 

= 0.001  and numbers of steps 20000 at calculation 

were used. 

 On fig. 2 the calculation of the population 

dynamics of recessive allele a on the basis of the 

equation (29) at various inbreeding factors F is shown. 

On the abscissa axis the size n ≈ t/0.462√(1-F)/F  is 

plotted. 

 From graphs it is visible that at presence of 

inbreeding in the population there is continuous increase 

of the recessive allele a frequency qf  in which can arise 

lethal adverse (at association in homozygotes) mutations 

i.e. there is the negative genetic load in the population. 

The growth of the recessive allele frequency received in 

calculation is observed due to growth of the recessive 

homozygotes aa frequency. Thus the frequency of a 

heterozygotes Аа at inbreeding falls that leads to the 

general falling of the intact recessive allele a frequency 

qf  on all zygotes in a population (АА, Аа, аа) due to 

adverse mutations only the recessive homozygotes aa. 

 Traditionally [8] the genetic load is estimated on 

the basis of the analysis of deadborns or children’s death 

rate with the help of two parameters A and B included in 

the approximate equation for the fraction of the survived 

zygotes: 

S = exp (A+BF)     ……..(30) 

Unfortunately the data on experimental sizes of 

parameters A and B have very much variation of the 

values. In [1] cited the data on the population of 

FranceB = 1.5 - 2.5  and B/A = 15.06 - 21.41. 

More detailed data are available on the population 

of Japan. In different prefectures the ratio                           

B/A = 15.2-(-5). Negative value B/A means that 

children’s death rate in consanguineous marriages was 

lower than in non consanguineous marriages. Average 

sizes on the country A = 0.1036, B = 0.67 and                    

B/A =  6.7 

 It is possible to assume that there is some 

threshold of a recessive homozygous genes allowable 

frequency compatible with a survival of individual. 

Taking into account values A and B, and also 

inbreeding factor for Japan F = 0.004  [1] under the 

formula (30) we shall find the fraction of the survived 

zygotes S = 0.9. Fraction of the perish zygotes there is   

1-S = 0.1. The elementary estimation under the formula 

1-S = q2
f = 0.1 gives the fraction of lethal recessive 

alleles at association theirs in homozygous  

qf ≈ 0.316 [4]. Hence the fraction of not mutant 

genes equal to threshold frequency of the recessive 

alleles is qf max = 1-qf =0.684. 

 On fig. 2 dotted line shows the threshold 

frequency. For Japan this frequency is attained 

approximately in 167 generation. 

 The received result shows that accumulation of 

the genetic load it is process very slow. Achievement of 

the threshold frequency for Japan to be carried out only 

in 167 generations or 4175 years at time of the one 

generation alternation T = 25 years. 

 In [1] it is noticed that from the beginning of 

the population development with inbreeding factor                  

F = 0.003 - 0.005 up to achievement of an equilibrium 

frequency which is established at action of selection 

should pass about 4500 years. In calculation the formula 

of linear increase of recessive alleles frequency was used 

at mutation speed μ = 10-5
. Increase of the mutant 

alleles number was compensated by selection against 

recessive homozygotes with parameter of selection 0.5. 

 Therefore, most likely that limiting values of the 

genetic load in a human population of many countries 

especially taking into account small sizes of inbreeding 

factor (Canada F = 45.10-5, France F = 23.10-5, 

Germany F = 19.10-5, Italy F = 16.10-5  [1] etc.) even at 

presence of selection till now are not achieved. 

 In our opinion with help of the offered method it 

is possible to examine not only harmful for the 

population genetic load related with inbreeding but also 

useful and indifferent genetic load (or attributes). 

 At early stages of mankind development the role 

of inbreeding was more in connection with smaller 

number of people and isolation of separate groups. 

Therefore, accumulation of the genetic load was more 

intensively (the inbreeding factor was much more). 

Primeval people after the going out from Africa and 

moving in northern Europe began to live in conditions of 

smaller light exposure including in the ultra-violet part of 

spectrum. In result the skin with originally dark 

pigmentation started to have white color. It promoted 

occurrence of vitamin D which deficiency results in 
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rickets [1]. Process of dark pigmentation reduction of 

skin can be examined as accumulation of the recessive 

useful genetic load. Natural selection fixed given 

phenotypic attribute at people in region. 

 To the indifferent genetic load in population it is 

possible to ascribe occurrence such recessive attribute 

as blond hair, for example, in northern part of Europe 

where apparently at early stages the inbreeding has 

been especially widespread. Color of hair does not play a 

role in survival of population. Fixed of this attribute was 

carried out by the sexual selection i.e. marriage 

preferences of people in region. 

 However it is traditionally accepted to examine 

accumulation of the genetic load in the population are 

determined by harmful mutations. Some fears of H. J. 

Muller are connected to this process about danger of the 

future biological degeneration of mankind [6].                  

Migration of Inbred Populations 

 As it was already specified above in primitive 

populations, for example, leaving of Africa and moving 

aside northern Europe influence of inbreeding was 

important. Therefore, we shall consider influence of 

inbreeding on a migrating population.  

 The way of the inbreeding account for a 

motionless population has been analyzed in paragraph 

3, equation (28). Adding in the equation (28) for allele 

frequency qf  motionless inbred populations the item 

reflecting movement of a population [9] we shall find 

the general equation for a condition of genome in a 

moving inbred population: 

 

      …...(31) 

 The found equation is the nonlinear differential 

equation of the second order with square-law 

nonlinearity. qf  = f (ς) We shall search the solution of 

the equation (31) as a traveling wave ς = kX - ωn 

(where In this case the equation (31) will be 

transformed to the kind: 

 

  …..(32) 

Let’s lower the order of the equation (32) having 

designated. 

 

 

 

 

We shall receive Abel’s differential equation: 

 

  

…..(33) 

 Where ω/k = V  there is speed of the population 

movement. Let’s note that the received differential 

equation does not depend on size  Δn. 

 The analytical solution of the equation (33) does 

not exist. However the greatest interest has dependence 

of the population movement speed V on inbreeding 

factor F. This dependence can be found without the 

solving of the equation (33). 

 Let's consider the right part of the equation (33) 

which defines the inbreeding in a population. The 

inbreeding factor F is present both at numerator, and in 

the denominator. Factor F serves in numerator for 

establishment of all right part existence in the equation 

(33). At F = 0 the right part of the equation (33) 

disappears and the population to become panmictic i.e. 

in this case qf = pf0 = const. If F≠ 0 the recessive allele 

frequency qf  grows, fig. 2, i.e. inbreeding factor in 

numerator is responsible for dynamics of the function  qf 

growth. Therefore, the inbreeding factor in numerator of 

the equation (33) right part should be kept at any 

transformations. 

Taking into account the given position we shall 

transform the right part (33) as follows: 

 

   …….(34) 

 All parameters connected to the wave phase are 

present only at the second addend in brackets of the 

right part (34). Therefore, it is possible to conclude that 

for the account of the inbreeding factor influence on the 

moving population speed it is necessary to multiply the 

speed of the population wave in √(1- F ). 

 Using result received in [9] for the genome 

speed V of moving population and itself population we 

can transform it to the kind: 
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 ……..(35) 

  

 On fig. 3 the dependence of the moving 

population speed on inbreeding factor is shown at the 

following parameters:   = 0.4 km, D* = 10km2/year, 

T≈25 years. 

 The received result, fig. 3, can be interpreted as 

follows. At increase of inbreeding in the moving 

population its speed of movement decreases. Biologically 

it can be connected by that in the population with 

consanguineous mating the individuals become more 

weakened and during moving by less dynamical. 

 At F = 1 according to (35) the population stops. 

The reason of this stop there is fast and full 

degeneration of the population. If to address to the 

equation (28) for the motionless population (or (31) at  

D = 0) at F → 1 the right part of the equation which 

determines the inbreeding quickly grows aspiring to 

infinity. This increase can be compensated only to 

increase in velocity of frequency qf growth in the left 

part of the equation (28). But this speed is limited by 

the biologo-reproductive opportunities of the population. 

Therefore, in a reality achievement F = 1 does not occur 

because the population quickly degenerates. 

 During migration of populations owing to small 

number of individuals the role of consanguineous mating 

was great. The found differential equation (31) of the 

moving inbred populations allows to analyse reduction in 

speed V of a population movement depending on 

inbreeding factor. 

Migration of Inbred Populations at Presence of Selection 

 The population is in process of migration usually 

enough long time. During migration of a population 

there is an alternation of generations and natural 

selection operates. 

 Using (31) and result received in [10], it is 

possible to write down the differential equation 

migrating inbred populations in which natural selection 

operates.  

 

 

                                              ……….(36) 

 The received nonlinear equation is difficult for 

the analysis. However, taking into account cubic 

nonlinearity of the differential equation of the second 

order it is possible to assume presence of solutions as 

solitary population waves [11]. Apparently, the 

migrating population represents such solitary wave.  

 However, the equation (36) allows receive very 

important analytical result. For this purpose it is used 

wave substitution ς = 1/Δn2
 (kX - ωn) where k there is 

wave number, ω - dimensionless cyclic frequency of the 

population waves. In result we shall find: 

 

   ……..(37) 

 Let’s find the particular solution of the equation 

(37). We shall equate the right part of this equation to 

zero. 

 

 

In result we have: 

 

     …….(38) 

 Obviously, value of frequency qf (or                   

pf = 1 – qf = 2F/(1-F)s ) in the formula (38) satisfies to 

the equations (36) and (37). 

 The received expression (38) can be interpreted 

as follows. If in inbred populations which began to 

migrate there is some frequency of a recessive allele in 

Х-chromosomes at women for preservation of this 

frequency should be interrelation (38) between 

inbreeding factor F, parameter of selection s and this 

frequency qf. Formula (38) is correct and for motionless 

populations. 

 We assume the frequency of the recessive allele 

is equal qf = 0.6. If to use inbreeding factor F = 19.10-5, 

for example, for Germany [1] that for a migrating 

population this frequency did not vary the parameter of 

selection must be s = 9.6.10-4 . 
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Figure 2. Population dynamics of recessive allele a at various    

inbreeding factors F 

Figure 3. Dependence of velocity of migrating population on     

inbreeding factor 

The kind of consanguineous marriage Inbreeding factor Ft 

Second cousins 1/32 

Cousin uncle - niece 1/32 

Third cousins 1/64 

Table 1. inbreeding factors for the some consanguineous marriages are 

shown in addition. 
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The problem of interaction of populations is very 

important. Obviously, it is connected to a finding of the 

multiwave solutions of the equation (36) that is 

extremely complex mathematical problem. Population 

waves can cooperate with each other in the various 

ways.  

Population Waves can have Character of a Solitons [11].  

 Solitons - it is stable nonlinear solitary waves 

which at interaction with other local perturbations or 

with each other show particle like properties. For 

example, they restore the initial form, i.e. interactions 

similarly to absolutely elastic particles, for example, to 

absolutely elastic spheres. As well as spheres the 

solitons, for example, can be reflected from a barrier. 

The marked properties of solitons are caused they has 

the strict balance of the nonlinear processes resulting in 

increase of a steepness of a wave forward front and 

dispersive processes lead to destruction a solitary wave, 

i.e. to reduction of a front steepness. The balance of 

these processes leads to stability of soliton, i.e. 

invariability of its form. 

 We shall note that the third degree of 

nonlinearity of the differential equation (36) is sufficient 

for occurrence of a soliton [11]. At interaction of the 

solitons the population waves can change directions on 

opposite on type impacting spheres. I.e. populations try 

to avoid the destruction. If populations belong to poorly 

cooperating individuals (elephants and birds) waves of 

populations at interaction pass through each other 

practically not influencing one on another.  

 As a whole, the further analysis of interaction of 

populations has no genetic-mathematical character and 

passes to area of the social phenomena. 

Conclusion 

 Inbreeding in a family tree and a population it is 

possible to take into account with the help of an 

inbreeding factor which is probability that two alleles at 

various individuals are identical by origin. 

 The Hardy – Weinberg’s law has a various kind 

for inbred a family tree and populations. In a family tree 

the inbreeding factor is included into the discrete 

equation, and populations in the differential equation. 

The numerical solution of this differential                       

equation is found. 

 Found the distribution of genotypes in Х-

chromosomes shows that as well as in autosomes at 

inbreeding the fraction of homozygotes increased, and 

the fraction of heterozygotes is reduced. At the greater 

predisposition to mutations of the recessive 

homozygotes which frequency increases at inbreeding 

the accumulation of a genetic load is possible. 

 It is shown that speed of a migrating population 

at increase of inbreeding factor is reduced. 

 Interrelation of the recessive allele frequency at 

woman for a migrating population with inbreeding factor 

and standard parameter of selection was found. 
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